Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
PLoS One ; 18(3): e0283473, 2023.
Article in English | MEDLINE | ID: covidwho-2287555

ABSTRACT

SARS-CoV-2 pandemic has profound impacts on human life and global economy since the outbreak in 2019. With the new variants continue to emerge with greater immune escaping capability, the protectivity of the available vaccines is compromised. Therefore, development a vaccine that is capable of inducing immunity against variants including omicron strains is in urgent need. In this study, we developed a protein-based vaccine BCVax that is consisted of antigen delta strain spike protein and QS21-based adjuvant AB801 in nanoparticle immune stimulation complex format (AB801-ISCOM). Results from animal studies showed that high level of anti-S protein IgG was induced after two doses of BCVax and the IgG was capable of neutralizing multiple variants of pseudovirus including omicron BA.1 or BA.2 strains. In addition, strong Th1 response was stimulated after BCVax immunization. Furthermore, BCvax with AB801-ISCOM as the adjuvant showed significant stronger immunity compared with the vaccine using aluminum hydroxide plus CpG 1018 as the adjuvant. BCVax was also evaluated as a booster after two prior vaccinations, the IgG titers and pseudovirus neutralization activities against BA.2 or BA.4/BA.5 were further enhanced suggesting BCVax is a promising candidate as booster. Taken together, the pre-clinical data warrant BCVax for further development in clinic.


Subject(s)
COVID-19 , ISCOMs , Animals , Humans , COVID-19 Vaccines , SARS-CoV-2 , Protein Subunits , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/genetics , Adjuvants, Immunologic , Adjuvants, Pharmaceutic , Animals, Laboratory , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
2.
Opt Express ; 30(12): 22233-22246, 2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-2065093

ABSTRACT

We propose a measurement method for sensitive and label-free detections of virus-like particles (VLPs) using color images of nanoplasmonic sensing chips. The nanoplasmonic chip consists of 5×5 gold nanoslit arrays and the gold surface is modified with specific antibodies for spike protein. The resonant wavelength of the 430-nm-period gold nanoslit arrays underwater environment is about 570 nm which falls between the green and red bands of the color CCD. The captured VLPs by the specific antibodies shift the plasmonic resonance of the gold nanoslits. It results in an increased brightness of green pixels and decreased brightness of red pixels. The image contrast signals of (green - red) / (red + green) show good linearity with the surface particle density. The experimental tests show the image contrast method can detect 100-nm polystyrene particles with a surface density smaller than 2 particles/µm2. We demonstrate the application for direct detection of SARS-CoV-2 VLPs using a simple scanner platform. A detection limit smaller than 1 pg/mL with a detection time less than 30 minutes can be achieved.


Subject(s)
Biosensing Techniques , COVID-19 , Nanostructures , Antibodies , Biosensing Techniques/methods , Gold/chemistry , Humans , Nanostructures/chemistry , Polystyrenes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Surface Plasmon Resonance/methods
SELECTION OF CITATIONS
SEARCH DETAIL